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ABSTRACT

A dynamical mechanism for the generation of coastal seiches by deep-sea internal waves is investigated using
a linear, two-layer coastal model in which internal waves from the deep ocean impinge upon a step-shelf bottom
topography. For periodic incident waves, a pronounced peak in the shelf response occurs at each coastal seiche
frequency. The maximum amplitude over the shelf is almost directly proportional to the degree of stratification,
suggesting that seiche activity should vary with seasonal changes in the stratification.

Based on the periodic solutions, Fourier transforms are used to determine the response to one or more
internal-wave pulses, and the results are qualitatively consistent with observations. For geometry and stratification
which are representative of the Caribbean coast of Puerto Rico, reasonably realistic incident pulses preferentially
excite the basic seiche frequency, and a rather small amplitude pulse (10 m) can easily generate currents at the
shelf break of 8-10 cm s™'. Further, as is typical of the observed seiches, the time history of the modeled
motions over the shelf can be rather irregular, depending on the pulse shape and the time delay between pulses.

1. Introduction

Recently Giese et al. (1982), Giese and Hollander
(1987) and Giese et al. (1990) have reported evidence
that large-amplitude coastal seiches are forced by tide-
generated internal waves which impinge upon the
coastal topography from the deep sea. The scenario is
as follows. Tidal currents flowing over a sill form groups
of solitary waves, which propagate hundreds of kilo-
meters across the open ocean toward the coast (e.g.,
Apel et al. 1985). Shortly after the solitary waves reach
the coast, large-amplitude seiches are observed in
coastal sea-level records. The amplitudes of the coastal
seiches are highly correlated with the spring-neap tidal
cycle, i.e. seiche activity has a fortnightly distribution
with the largest seiches following spring tides.

Although the observational evidence is strong, what
has been lacking is a dynamical mechanism for the
baroclinic-barotropic coupling that transfers energy
from internal solitary waves to coastal seiches. Such a
process may seem unintuitive because energy is more
typically transferred from barotropic flows to baroclinic
flows (e.g. the generation of internal tides). We propose
here a simple model that demonstrates that the reverse
energy transfer (baroclinic to barotropic) can be suf-
ficient to account for the observed coastal seiches. The
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model (described in section 2) is a slightly modified
version of the linear, two-layer model used by Chap-
man (1984) in which deep-sea internal waves are in-
cident upon a step-shelf bottom topography. The as-
sumption of linearity precludes a proper treatment of
internal solitary waves, per se, so we do not attempt
to study their propagation over large distances. Instead,
we consider only the short time during which the waves
interact with the topography—a time too short to ob-
tain appreciable nonlinear or dispersive effects. In this
situation, the general results for periodic forcing (sec-
tion 3) can be used to study the shelf response to one
or more linear, deep-sea, internal wave pulses (section
4) which then provides insight into the response to
solitary-wave forcing. The strengths and weaknesses of
this approach are elaborated in section 5 followed by
some concluding remarks in section 6.

2. Model formulation

We consider a simple model (Fig. 1) in which the
deep ocean (with depth H) is stably stratified with two
immiscible fluids having slightly different densities. The
upper layer has mean thickness 4, and density p, while
the lower layer has thickness #, = H — h, and density
p(1 + ¢€), where € < 1. The deep ocean borders a step
shelf with width L, constant depth d and a homoge-
neous fluid of density p. Thus, the interface depth A,
is always greater than the shelf depth d. Rotation effects
are neglected and motions are assumed linear. The
problem consists of determining the response of the
model to an internal gravity wave (on the interface {)
incident from the deep ocean (x = o).
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FIG. 1. Step-shelf topography with two-layer stratification
in the deep sea.

A

S

z=-H

After making the shallow-water (hydrostatic) ap-
proximation (justified in the Appendix ), the equations
of motion for this nonrotating, two-layer model are

ul = —gn, (1a)
vV =—gn, (1b)
(uxU+ vyu)hl +n—§=0 (Ic)
ut = —g[(1 — e)n, + €] (2a)

vF = —gl(1 ~ e)n, + €] (2b)
(wrt+v,5h+ =0 (2¢)

where 5 and { are, respectively, the sea surface and
interface displacements from rest; (Y, vY) and (u?,
vl) are the cross-shelf (x) and alongshelf (3’) velocities
in the upper and lower layers, respectively; and g is
gravitational acceleration. Subscripts x, y, ¢ denote
partial differentiation. Motions over the shelf are de-
scribed by (1) with { = 0 and 4, replaced by d in (1c).
For simplicity, variables are scaled as follows:

X, yby L

d, hy, hy by H

7, {by {
uY, vY, ut, vt by (g/H)'?§i
tby L/(gH)"?

where ¢; is the amplitude of the incident deep-sea in-
ternal wave. This scaling places the coast at x = —1,
the shelf break at x = 0 and the deep-sea bottom at z
= —1. Motions are also assumed monochromatic and
propagating in the alongshelf direction with frequency
w and wavenumber /, i.e., ccexp(iwt = ily) which allows
oblique incidence of the internal wave.

Having specified an incident internal wave, solutions
are obtained by first finding appropriate solutions for
the shelf and for the deep-ocean regions separately, and
then requiring continuity of surface displacement and
cross-shelf mass transport at the shelf break (x = 0).
Deep-ocean solutions are found by combining (1) and
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(2) into a single equation for the deep-ocean surface
displacement (in scaled form),

82 2 32 2 D
W‘i‘lﬁ a‘x-z‘*’ﬁ— 7 =0 (3)
where
w? w? )
o= (B-r), 82-(S-r),
1,1
Ciz = 3 + 5(1 - 4€h1h2)1/2.
An appropriate solution of (3) is
7P = Ie®-* + Be™-X + Ce +* (4)

where the unknown (complex) coefficients (/, B, C)
represent the contributions to the surface displacement
due to the incident internal wave, the reflected internal
wave and the reflected surface wave, respectively. Note
that (3) and (4) are written such that lc. < w results
in real 8, B_; i.e. all waves are periodic in the cross-
shelf direction.

Shelf solutions are found by combining the appro-
priate form of (1) into a single equation for the surface
displacement which is (in scaled form)

92 .
(74‘012) =0

where a? = (w?/d — [?). The solution of (5) which
satisfies the boundary condition of no flow through the
coast (u=0atx=—1)is

75 = A cos[a(x + 1)]

(3)

(6)

with unknown (complex) amplitude 4.

The incident wave amplitude / is specified to cor-
respond to the surface expression of an incident internal
wave with unit (nondimensional ) amplitude; that is

I=p'=(1—h/c?)™. (7)

Using this value of 7 [an O(¢) quantity], the total sur-
face displacement over the shelf or deep ocean repre-
sents the response due to an incident internal gravity
wave with unit interface displacement. The dimen-
sional #, { are recovered by multiplying the nondi-
mensional values by ¢{;. The dimensional velocities are
recovered by multiplying the nondimensional values
by (¢/H)'"*¢;.

The unknown amplitudes 4, B, C are determined
by requiring (i) continuity of surface displacement, (ii)
continuity of upper-layer cross-shelf mass transport,
and (iii) vanishing of the cross-shelf velocity in the
lower layer of the deep ocean (1% = 0), all at x = 0.
This leads to three matching conditions at x = 0:

S_.D

7’ =17 (8a)
dn,® = hin,® (8b)
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ot (5= )2 =0 (8¢)
Ehl

Substitution of (4), (6) and (7) into (8) produces three

linear equations for the three unknown amplitudes 4,

B, C, the solution of which yields

A =2u""/(cosa + \isina) (9a)
B=Acosa—C—pu’! (9b)
—A (hilg) i sina
C= L C__2 Ehl _ C+2 (9C)
¢t \ehy — 2
where
( da) 1_& E__z) eh,—c+2)
hi8+ 8- C+2 ehy — c.?
A _—

[ g eh — ¢°
et )\ ehy — ¢ 2
Equations (9) may be evaluated for any choice of the

five parameters (¢, /1|, w, [, d) provided that «, 3,, 8-
are real and d < A,.

3. Response to periodic forcing

We are most interested in the response over the shelf,
so the discussion will concentrate on the shelf response
A. Further, the parameters will typically be chosen to
represent the shelf on the southwestern coast of Puerto
Rico: shelf depth ~ 18 m, shelf width =~ 10 km, and
deep-sea depth =~ 4000 m (see Giese et al. 1990). The
stratification varies seasonally, typically ranging from
e = 0.002 to 0.005 (e.g., Froelich et al. 1978). The
upper-layer depth is assumed to be 128 m, which gives
the same phase speed (for ¢ = 0.004) as that computed
by Giese et al. (1990) for the lowest mode internal
wave. The corresponding nondimensional variables are
d = 0.0045 and h, = 0.032.

Choosing ¢ = 0.004, we have evaluated (9) for many
combinations of incident frequency w and alongshelf
wavenumber /. The magnitude of the shelf response
| 4| is shown in Fig. 2. The thicker diagonal line rep-
resents the boundary between periodic deep-sea surface
waves (left) and offshore exponentially decaying deep-
sea surface waves (right). Edge waves occur to the right
of this line and were the subject of study by Chapman
(1984). Within the periodic region, the response 1s
nearly independent of / suggesting that the angle of
incidence of the internal wave [given by tan"'(//8_)]
is relatively unimportant. The largest response occurs
along fairly narrow ridges which, not surprisingly, cor-
respond to the barotropic coastal seiches which occur
(for/l=0)atw=d"?x(1/2+n)forn=0,1,2---.
These peak responses are shown more clearly in Fig.
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FIG. 2. Contours of the magnitude of the shelf response | A | for
various frequencies w and alongshelf wavenumbers /. Other param-
eters are d = 0.0045, h, = 0.032, ¢ = 0.004. Coastal seiches are found
only to the left of the thick diagonal line. Contour values are 0.01,
0.02, 0.03, 0.06.

3 which is a slice through Fig. 2 along the frequency
axis (/ = 0). The peaks are not infinite, even without
any frictional dissipation, because the seiches con-
stantly leak energy offshore in the form of surface and
internal gravity waves [last two terms on the right in
(4)]. The maximum response (near resonance) is an
order of magnitude greater than the background re-
sponse (off resonance, e.g. w =~ 0.2), which becomes
a difference of two orders of magnitude when consid-
ering energy.

An analytical expression can be found for the mag-
nitude of the peak response from (9a) with / = 0 and
e<1:

2€h2
d1/2(1 + 6l/2h23/2hl—1/2) *

The maximum response is inversely proportional to
the square root of the nondimensional shelf depth in-
dicating that large coastal seiches forced by internal
waves are more likely to be found over shallow shelves
which border deep ocean basins. Also, the maximum
response is almost linearly related to the stratification
which suggests that the seiche activity should vary with
the seasonal changes in stratification. The parameter
dependence is shown in Fig. 4 where contours of | 4| nax
are plotted for various (¢, /1;) pairs. The strong depen-
dence on ¢ is clear, while the dependence on 4, is fairly
weak near the value appropriate to Puerto Rico (/1
= 0.032).

To put the values of | 4| max into perspective, if the
incident internal wave has an amplitude of {; = 10 m

[ Al max = (10)
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FIG. 3. Magnitude of the shelif response | 4| versus frequency w
for a normally incident internal wave (/ = (). Other parameters are
d = 0.0045, 1, = 0.032, ¢ = 0.004.

(not large for this site; see Giese et al. 1990), then the
lowest-mode seiche peak in Fig. 3 occurs at a period
of 50 min and corresponds to a sea-surface displace-
ment at the coast of 86 cm with a cross-shelf velocity
at the shelf break of 64 cm s~!, both very large values
indeed!

4. Response to pulse forcing

The response described above is clearly supportive
of the possibility that deep-sea internal waves could
force large-amplitude coastal seiches. However, the pe-
riodic predictions for sea-level oscillations and currents
at the shelf break are enormous. This results from the
unrealistic assumption of a continuous train of incident
waves at just the proper resonant frequency. Real in-
ternal waves do not typically occur in this form. In
fact, tidally generated internal waves are expected to
be more like a group of internal solitary waves (e.g.
Apel et al. 1985). Giese et al. (1990) suggest that in-
ternal-wave packets may be generated in the south-
eastern Caribbean, and these would most likely be the
forcing mechanism of interest for the present model
study.

As mentioned above, the linearity of the present
model precludes a proper treatment of solitary waves,
which depend on some nonlinearity to remain intact.
On the other hand, we can use the periodic results to
investigate the response of the present model to a single
event, or pulse, on the interface impinging upon the
shelf. This approximates the response to a solitary wave
as it gets close to the shelf break because the interaction
time is too short for the nonlinear effects to be appre-
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ciable. The linear pulse maintains its structure because
the shallow-water approximation renders the waves
nondispersive (i.e. all of the individual components
have the same phase speed). A group of pulses can be
simulated in a similar manner.

Formally, the shelf response to a pulse traveling along
the interface can be obtained using the Fourier trans-
form in time and its inverse transform, defined by

G(w) = f_oo G(t)e ™ dr,

G(t)=ﬁf_w G(w)e™ dw. (11)

The pulse is assumed to be normally incident upon
the shelf (/ = 0) with speed ¢_ and arbitrary shape,
£P(t + x/c-). From the periodic results and (11), the
sea surface and velocity over the shelf can be written
as

700 0) = 5 f i () A(0)

X cos[w(x + 1)/Vdle™'dw (12a)
s _ 1 “ ap
uS(x,t) P f_w {(w)A(w)

X sin[w(x + 1)/Vd]e“dw (12b)
where the scaled form of (la) has been used and

fed (w) is the Fourier transform of {%.
With the assumption of normal incidence (/ = 0),
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FIG. 4. Contours of the maximum shelf response | A | ma, for various
density differences e and upper-layer thicknesses 4,. Other parameters
are d = 0.0045, /= 0.



SEPTEMBER 1990

the response over the shelf given by (9a) can be sim-
plified to

A(w) = 2" /[cos(w/Vd) + \i sin(w/Vd)]

g: 0 e—iw(2n+1)/\/2
n

n=0

(13)

where
4p! 1 =AY
_1 ny
1+ }\( ) (1 + )\)
and A is independent of w. Substituting (13) into (12)
and using (11) yields

O =

I (x+1) (2n+1)
ren =3 3 oo R - S
+§P[Z*(xv%1)_(2nv;)” (142)
s ___°° p (x+1)_(2n+1)]
WD =y 2 O H’* Vi Va

—(P[z—(xv%”—(z”v%l)”. (14b)

The shelf response to an incident pulse now becomes
fairly clear. The incident pulse generates a surface pulse
at the shelf break with amplitude Q,/2 which travels
across the shelf toward the coast. It’s amplitude doubles
to Oy at the coast where it reflects from the coastal wall
and travels back across the shelf toward the shelf break.
Upon reaching the shelf break, part of the pulse is re-
flected shoreward while part continues into the deep
ocean leaking energy to deep-ocean surface and internal
waves. This leakage reduces the amplitude of the re-
flected pulse by the factor (1 — X)/(1 + A). The re-
flected part travels toward the coast, repeating the pro-
cess until the incident energy is entirely gone from the
shelf.

To illustrate the shelf response, we consider a single
incident pulse with a Gaussian shape and unit ampli-
tude

g—P — _e—(x+c_t)2/72 (15)
where v is the pulse half-width (made nondimensional
by scaling with the shelf width L) and the negative sign
makes the pulse a depression of the interface. We have
limited knowledge of the structure of the tidally gen-
erated internal wave groups in the Caribbean, so we
choose the pulse width to be in the range of those ob-
served in the Sulu Sea (Apel et al. 1985) which were
typically 1-4 km wide (v = 0.05-0.2). Otherwise, the
nondimensional quantities appropriate to the Puerto
Rico shelf (used in section 3) are chosen here. As in
the periodic case, the dimensional response is obtained
by multiplying the sea-surface elevation by ¢; and the
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velocity by (g/H)'/?{;, where {;is now the dimensional
pulse amplitude.

The sea-surface response over the shelf in space and
time is shown in Fig. 5 for three different pulse widths.
In each case, the pulse maximum arrives at the shelf
break at time ¢ = 0. The initial shelf pulse can be seen
traveling across the shelf and alternately reflecting from
the coast and the shelf break. The shelf pulse is clearest
for the narrowest incident pulse (v = 0.05; Fig. 5a).
When the pulse width is a greater fraction of the shelf
width, then the multiple reflections interfere, and the
response closely resembles a lowest mode coastal seiche
(Fig. 5¢). Another way to view this is that the wider
pulse has a narrower Fourier transform, i.e. less energy
at the higher frequencies, so the response is smoother
in time. Note that the response at the shelf break con-
sists of the initial shelf pulse followed by almost no
variations in surface height despite the multiple reflec-
tions of the shelf pulse. This suggests that the bottom
pressure signal at the shelf break might be a proxy for
measuring the incident internal wave signal.

The dynamics of the shelf response are revealed more
clearly by the three time series shown in Fig. 6 (all
quantities are in nondimensional form). The bottom
time series shows the incident pulse arriving at the shelf
break at ¢ = 0. The uppermost time series is the sea-
surface elevation at the coast, while the middle time
series is the cross-shelf velocity at the shelf break. There
is no response before the pulse arrives. As it arrives,
the onshore (negative) velocity in the upper layer above
the (negative-amplitude) incident pulse induces an
onshore flow at the shelf break. The coastal sea-surface
rise is delayed because the information must propagate
to the coast at the surface gravity wave speed. Thus,
the first maximum sea-surface elevation occurs at ¢
= 15; the nondimensional time required for a gravity
wave to cross the shelf, 7'/2. After the pulse has re-
flected from the topography, the sea surface at the coast
and the velocity at the shelf break oscillate nearly as a
free coastal seiche. The two time series are 90° out of
phase with the coastal sea-level maximum occurring
when the shelf-break velocity is zero, followed by an
offshore flow as the coastal sea level falls. This behavior
is also seen clearly in the observations from Puerto
Rico (see Giese et al. 1990, Fig. 10).

From the definition of @, in (13), the reflection coef-
ficient for the pulse upon encountering the shelf break
may be computed exactly. While the full expression is
cumbersome, a good approximation can be derived by
taking advantage of the fact that ¢ < 1. Then, to order

€'/2, we obtain
1—>\
T =1 -2Vd +3d/2

— (e/h)'*(2Vd = 3d)(1 — k)2, (16)

For small 4 (i.e. a shallow shelf bordering a deep
ocean), the value is close to unity meaning that little
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FIG. 5. Sea-surface elevation over the shelf through time in response to a single Gaussian-
shaped pulse traveling along the interface normally incident upon the shelf. Pulse width varies
with v = (a) 0.05, (b) 0.1 and (c) 0.2. Other model parameters are d = 0.0045, k, = 0.032,
e = 0.004.

energy is lost to the deep sea during the reflection at
the shelf break. In this case, the pulse would reflect
many times before the shelf energy would be lost. In
other words, the seiching would continue long after the
arrival of the pulse. The shelf break reflection coeflicient
corresponding to the case in Fig. 6 is 0.835, and the
ringing is obvious. Notice that the reflection coefficient
decreases with increasing stratification. This occurs be-

cause the deep-ocean internal waves are more efficiently
excited when the stratification is stronger. So, although
the initial response is larger when the stratification is
stronger, the resultant seiching will decay more rapidly
after the forcing ceases.

The magnitude of the shelf response to the single
pulse is much smaller than that of the peaks in Fig. 3
because the pulse contains less energy at the lowest-
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F1G. 6. Time series of (upper) sea surface elevation at the coast
and (middle) cross-shelf velocity at the shelf break, which result from
an incident pulse whose interface displacement at the shelf break is
shown in the lower time series. For this case, d = 0.0045, A, = 0.032,
e=0.004, v = 0.1.

mode seiche frequency. In dimensional units, if the
incident pulse amplitude is 10 m (actually rather small
based on the Sulu Sea observations of Apel et al. 1985),
then a nondimensional sea-surface displacement of
0.01 corresponds to about 10 cm, while a nondimen-
sional velocity of 0.10 corresponds to about S cm s™.
Thus the magnitudes of the responses shown in Fig. 6
(maximum coastal sea level of 14 cm; maximum shelf-
break velocity of 10 cm s7!) are both similar to those
observed off Puerto Rico during strong seiches (Giese
et al., 1990).

The beauty of the solution (14) is that the shape of
the incident signal is arbitrary (providing it is

= oo02f
& o001}
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FI1G. 7. As in Fig. 6 but for two incident pulses, each with vy = 0.1,
and separated by At = 60 nondimensional time units.
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bounded), so various forms of forcing can be consid-
ered easily. For example, Fig. 7 shows the response to
two pulses, each of which is identical to the pulse in
Fig. 6, and separated by At = 60 nondimensional time
units. This At is nearly equal to the period of the lowest-
mode seiche oscillation and results in an amplified
(resonant) response. Note that the scales in Fig. 7 are
the same as those in Fig. 6, so a pair of 10 m pulses
generates sea-surface displacements at the coast which
reach 20 cm and cross-shelf velocities at the shelf break
which reach 15 ¢cm s™}. On the other hand, if the two
pulses are separated by At = 80 units, then the response
(Fig. 8) is about the same size as that for a single pulse
(Fig. 6). Figure 8 also shows that, while the dominant
response is at the seiche frequency, the pattern of shelf
oscillations is generally irregular with the details de-
pending on the number, size and time delay between
pulses.

5. Discussion

The model presented here is intended to demonstrate
a dynamical mechanism by which baroclinic energy in
the form of deep-sea internal waves can be transferred
to barotropic coastal seiches. At this point, the results
should be interpreted primarily qualitatively because
of the simplifying assumptions made in the model for-
mulation. The most important of these are discussed
here. First, the linearity of the model technically re-
stricts the discussion to small-amplitude waves, so large
pulses like those observed in the Sulu Sea (Apel et al.
1985) cannot strictly be considered. As a result, the
linear phase speed is slightly less than that of the in-
ternal solitary waves, so that the time during which a
solitary wave interacts with the topography would
probably appear somewhat shorter than in the linear
case. However, this may effectively introduce more en-
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FIG. 8. As in Fig. 7 but the two pulses are separated
by At = 80 time units.
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ergy at the higher frequencies than is present in a linear
pulse which would increase the seiche response.

The use of the shallow-water approximation in the
deep ocean (as discussed in the Appendix) is another
model limitation. It certainly is violated by the very
high frequency components of the solution ( 12) which
would lead to some dispersive effects. However, the
approximation is quite good near the seiche frequency
and there is so little energy at the very high frequencies
that the errors are negligible. Furthermore, any dis-
persive effects would be unimportant for the short time
during the actual interaction of the pulse with the to-
pography.

Another limitation is the simple stratification used
here. We have shown that the model is sensitive to the
degree of stratification, but more realistic stratification
should be included to model the detailed energy trans-
fer more accurately. One step toward a more realistic
representation of the stratification is to allow contin-
uous stratification in the lower layer. Such an extension
of the present model is the subject of a forthcoming
paper by Grimshaw and Chapman.

Perhaps the most serious limitation is introduced by
the simple topography. In the present model, all of the
incident energy is reflected back to the deep ocean. On
the other hand, internal solitary waves impinging on
a sloping bottom would surely steepen and break, cre-
ating mixing and turbulence and altering the transfer
of baroclinic energy to the seiches. To study these pro-
cesses, realistic bottom topography and more complex
dynamics must be included in the model. We leave
this for the future.

One feature which has been neglected, but which
can be shown to have little effect, is bottom friction
over the shelf. Asin Chapman (1984), bottom friction
can be added in the form of the terms —ru and —rv
on the right-hand sides of (1a) and ( 1b), respectively,
when applied to the shelf. Here # is the bottom friction
coefficient which is scaled by (gH)'/?/L. The only
change in (5)-(9) and (12) is that d is everywhere
replaced by d/F, where F = 1 — ir/w. (Now o? = w*F/
d — I2.) However, A(w) can no longer be written as in
(13), so (12) must be evaluated numerically. This has
been done for the case equivalent to that shown in Fig.
6 with r = 0.003. In dimensional units, this friction
coefficient has the (rather large) value of 0.11 cm s™!
for an 18 m deep shelf. Results show that the ampli-
tudes of the first few oscillations in Fig. 6 are almost
unchanged (not shown). The primary effect is that the
frictional response decays slightly faster.

6. Conclusion

The model results presented here suggest that deep-
sea internal waves can generate coastal seiches of sig-
nificant amplitude. The most important factors re-
quired appear to be large-amplitude internal waves (e.g.
tidally generated solitary waves) and strong vertical

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

stratification. These results provide a dynamical mech-
anism for the transfer of baroclinic energy to barotropic
coastal seiches in general, and specifically provide an
explanation for the observed seiche activity along the
Caribbean coast of Puerto Rico. The lowest-mode
seiche tends to be the most highly excited, and sub-
stantial sea-level oscillations at the coast with large
currents at the shelf break are predicted. A truly quan-
titative comparison with observations will require a
more sophisticated model as well as a more complete
data set.
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APPENDIX

Justification for the Shallow-Water Approximation

The shallow-water approximation is a key assump-
tion in the present model because it removes all dis-
persive effects (i.e. all wavelengths of internal waves
have the same phase speed ) which allows the construc-
tion of a coherent wave pulse by superposition of pe-
riodic solutions. However, because the deep ocean
depth is 4000 m and the seiche period (50 min) is
fairly short, the approximation should be explicitly
justified.

The most stringent test of the approximation is to
compare the wavelengths and phase speeds of the in-
ternal waves with and without making the shallow-
water approximation because the internal waves are
shorter than the surface waves at any given frequency,
and hence, will be affected more by the assumption of
shallow water. The comparison is made here for uni-
directional waves over a flat bottom. All variables are
dimensional in this Appendix.

In the nonshallow water case, the wave solutions are
found by solving the irrotational, two-layer problem
as follows. A velocity potential in introduced as (u, v,
w) = V¢ which leads to Laplace’s equation for each
layer:

V2V =0; Vil =0. (17)
The pressure is set to zero at the upper surface
oY+ gp,¥=0 at z=0 (18)

while the vertical velocity and pressure must match at
the interface
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FIG. Al. Phase speed versus frequency for the exact linear model
(i.e. without making the shallow-water approximation; solid curve)
and the shallow water model (dashed curve). The seiche frequency
at Puerto Rico is 0.002 s~'. Dimensional parameters for this plot are
hy=128m, H=4000 m, pV = 1.024 gcm ™3, p* = 1.028 gcm 3.

¢.Y = ¢, at z=-h

pY (ol + g¢.Y) = pL(¢f + got) at z=—h
(20)

(19)

where pY, p’ are the upper and lower layer densities,
respectively. Finally, the vertical velocity must vanish
at the flat bottom

¢ =0 at z=-H. (21)

Assuming a periodic free wave solution with time
and space dependence of exp(—io + i8x), then equa-
tion (17}, along with the boundary and matching con-
ditions (18)-(21), can be reduced to a single dispersion
relation of the form

pY tanh(Bh)(o* — g7%) + p"[o” — gB tanh(Bh)]
X [o® coth(Bhy) — gB] = 0 (22)
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which relates the wavenumber 8 and frequency o. The
phase speed is then ¢ = ¢/8.

The equivalent phase speed and wavenumber for
the shallow water case are given by (3) with [/ = 0.
Using dimensional variables, these become

1/2
gH[l - (1 - 46”"’2) ] (23)

2
Csw

N | —

H2
Bsw = /Csu- (24)

The parameters appropriate for the Caribbean Sea
just offshore of Puerto Rico are #; = 128 m, H = 4000
m,pU=1.024gcm 3, pt=1.028gcm 2 andg=9.8
cm s~2. Using these values, the “‘exact’ linear phase
speed can be computed from (22) for a variety of fre-
quencies. (Of course, ¢, 1s independent of frequency.)
Figure A1 shows that the shallow water phase speed is
quite close to the exact linear phase speed (within 12%)
up to a frequency of 0.004 s~!. This is twice the seiche
frequency of 0.002 s ™! indicating that the shallow-water
approximation is quite good in this situation. The rea-
son is that, although the deep-ocean depth is compa-
rable to the wavelength of the internal wave at the
seiche frequency (6540 m), the upper layer is still very
thin in comparison.
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